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  Abstract   Complexity theory provides a common language and rubric for applying 
agent-based processes to a range of complex systems. Agent-based modeling in turn 
advances complexity science by actuating many complex system characteristics, 
such as self-organization, nonlinearity, sensitivity, and resilience. There are many 
points of contact between complexity and agent-based modeling, and we examine 
several of particular importance: the range of complexity approaches; tensions 
between theoretical and empirical research; calibration, verifi cation, and validation; 
scale; equilibrium and change; and decision making. These issues, together and 
separately, comprise some of the key issues found at the interface of complexity 
research and agent-based modeling.      

    7.1   Introduction 

 Complexity theory and the accompanying trappings of complex systems provide the 
theoretical basis for agent-based models (ABMs). While modelers are usually inter-
ested in addressing specifi c theoretical questions and working in particular substantive 
areas, they almost invariably draw on complexity concepts when using an agent-based 
approach. The relationship between ABM and complexity is mutually benefi cial. 
While complexity has much to offer ABM in terms of underlying concepts, modeling 
advances complexity by making real many of the often fuzzy concepts on which com-
plexity science relies. Advances in ABM are allowing modelers to move beyond 
studying complex systems in just metaphorical or rhetorical terms by giving them the 
tools to represent complex phenomena. Many disciplines are using ABM to enhance 
understanding of the interplay of complexity concepts, ranging from policy fi elds 
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(Carrillo-Hermosilla  2006 ; Gatti et al .   2005 ; McKelvey  1999  )  to the natural sciences 
(Brose et al .   2004 ; Phillips  2006 ; Rind  1999  )  through to the social sciences (Batten 
 2000 ; Manson and O’Sullivan  2006 ; Sampson et al .   2002  )  and into the humanities and 
arts (Nowotny  2005 ; Portugali  2006  ) . 

 When the theoretical questions regarding complexity are combined with the 
broadly applicable research allowed using ABM, a number of issues stand out, 
including:

   Reconciling a range of complexity approaches  • 
  Navigating the tension between theoretical and empirical research  • 
  Implementing calibration, verifi cation, and validation of models  • 
  Dealing with scale  • 
  Balancing the corollaries of equilibrium and change  • 
  Representing features of decision making.    • 

 These issues, together and separately, comprise some of the key points of contact 
and contention among the various components of complexity research and ABM. 
Ongoing examination of these issues is spurring further ABM research that illumi-
nates phenomena studied in the physical environment, social systems, and their 
combination via human-environment research.  

    7.2   Complexity Approaches 

 Complexity theory is less a singularly defi ned, discrete conceptual entity than an 
interdisciplinary focus for which individual fi elds and researchers use a common set 
of queries, concepts, and approaches. Given this lack of a single, identifi able core, 
the terms ‘complexity theory’ and ‘complexity sciences’ can therefore fi ttingly refer 
to an array of research methods. In order to provide an organizational schema to 
this diverse fi eld, we identify three streams of complexity research: algorithmic 
complexity, deterministic complexity, and aggregate complexity (cf. Byrne  1998 ; 
Cilliers  1998 ; Lissack  2001 ; Manson  2001  ) . At its simplest, algorithmic complexity 
conceives of any system in terms of the computational or heuristic processes needed 
to replicate system behavior. Deterministic complexity envisions a system through 
the lens of nonlinear dynamics and chaos theory, in order to try to capture system 
dynamics via a small set of mathematical equations. Aggregate complexity focuses 
on how complex systems arise from interactions among individual entities. It is this 
fi nal kind of complexity, aggregate complexity, that most ABM researchers tend to 
invoke when modeling, although algorithmic and deterministic complexity make 
their own contributions to ABM. 

 Complexity in any of its above-mentioned forms typically applies to a system, a 
set of entities connected to each other and the external environment in a way that 
gives it an overall identity and behavior. An ABM in its most basic form repre-
sents a system of such discrete entities. Systems can be of almost any scale, from 
atoms bound together in a molecule to households in an economy to planets in the 
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solar system. The key to modeling any of these systems, and therefore the key to 
complexity research and ABM, is the capture of core characteristics among system 
entities and, critically, their interrelationships. An ecosystem, for example, is self-
contained in terms of much of its structure and function but also has many connec-
tions to the larger climatic, geophysical, and biotic environment. The model must 
also have system boundaries that set it apart from its larger context. An urban area, 
for example, can be defi ned in a number of ways, but most models focus on ele-
ments of the built environment such as buildings and populations (e.g., workers, 
homeowners) that have relationships via migration, capital fl ows, and environmental 
relationships with the larger world. 

  Algorithmic complexity  focuses on representing systems in computational and 
mathematical terms. The component fi elds of computational complexity theory and 
information theory examine the diffi culties of computing the solution to problems 
and representing a system or reproducing its behavior (Chaitin  1974 ; Gell-Mann 
 1994  ) . At its most useful, algorithmic complexity provides a number of different 
measures of how a system is composed and represented. One helpful side effect is 
that some measures will identify problems that cannot be solved mathematically or 
computationally with our current state of knowledge, but that may yield to simula-
tion or heuristic approximations. Beyond these instances, the use of algorithmic 
complexity in complexity research and ABM has been limited given the greater 
interest in deterministic and aggregate complexity (O’Sullivan  2004  ) . 

  Deterministic complexity  is defi ned by approaches that use sets of mathematical 
equations to describe the state and trajectory of system dynamics. Deterministic 
complexity is so called because it fi nds for complex systems a few key variables and 
equations to describe system state and evolution; in this sense, system behavior is 
‘determined’ by these equations and variables. Positive and negative feedback are 
important components of deterministic complexity, spurring changes that self- 
reinforce or diminish over time, respectively. Given the potential for such feedback, 
deterministically complex systems exhibit both sensitivity and nonlinearity. The 
former refers to how systemic changes can result from small perturbations while the 
latter refers to how these small changes can give rise to disproportionately large 
changes in system structure or behavior (Phillips  2003  ) . The combination of sensi-
tivity and nonlinearity is exemplifi ed by the ‘butterfl y effect,’ where slight varia-
tions in initial model parameters, due to the displacement of air by butterfl y wings, 
can lead to large meteorological changes in a modeled weather system (Lorenz 
 1973  ) . The elements of sensitivity and nonlinearity are further adopted and extended 
by aggregate complexity for the modeling of agent-based systems. 

  Aggregate complexity  focuses on how complex systems arise from the local inter-
actions of system entities. With this perspective, the structure and dynamics of a 
system such as a city must be understood as driven by individual components and 
their relationships. In a city, these entities are people, households, fi rms, and orga-
nizations whose relationships are defi ned by exchanges of matter, energy, and infor-
mation. These entities have relationships with other entities and play multiple roles 
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within the city. Some of the stronger relationships give rise to larger aggregations 
(e.g., families, neighborhoods) that may act as entities in and of themselves. This 
potential for larger entities and behaviors to arise out of local interactions is seen as 
a form of self-organization, whereby entities and their relationships are suffi ciently 
strong yet fl exible enough to allow the overall system to adapt to a changing envi-
ronment (Easterling and Kok  2002  ) . In some settings, self-organization leads to 
self-organized criticality, where the system rapidly reconfi gures entities and internal 
relationships, in response to internal perturbation or external shocks (Bak  1996  ) . 
Self-organization is related to the concept of emergence, whereby system character-
istics or behavior result less from additive effects of system entities and their behav-
ior and more from synergistic relationships among entities (Funtowitcz and Ravetz 
 1994 ; Holland  1998  ) . One important kind of emergence is supervenience, where 
changes in system structure or behavior at one level of aggregation are driven by 
changes at a lower one (Sawyer  2002  ) . In sum, aggregate complexity demonstrates 
how system entities and their relationships defi ne the behavior of sub-systems and 
the system as a whole through self-organization and its offshoots, self-organized 
criticality, emergence, and supervenience. 

 While it is useful to denote various types of complexity – algorithmic, determinis-
tic, aggregate – it is also important to note that complexity draws on many conceptual 
antecedents. Since much of current complexity research, particularly aggregate com-
plexity, relies on notions of synergy and holism, it refl ects philosophies tracing back 
to Aristotle’s defi nitions of unity being more than the sum of parts and Whitehead’s 
philosophy of organism, which contends that understanding nature requires more than 
recourse to fi xed laws, and instead identifi es it as a system that is continually evolving 
(Whitehead  1925  ) . More recent antecedents include cybernetics and feedback (Wiener 
 1961  ) , neural networks and other biological analogs (McCulloch and Pitts  1943  ) , 
work in computing including cellular automata (von Neumann  1966  ) , and impor-
tantly, general systems theory, which holds that many systems have underlying simi-
larities (von Bertalanffy  1968  ) . Complexity departs from earlier related work by 
focusing on how systems emerge from the simple and local interactions among sys-
tem entities. While complexity shares with much previous work the assumption that 
systems can exist in equilibrium, it also actively explores the possibility of perpetual 
or repeated disequilibrium or near-chaotic behavior. In many respects, then, complex-
ity draws on key features of holism and synergy while also focusing on evolution and 
the balance between equilibrium and disequilibrium.  

    7.3   Issues of Complexity and ABM 

    7.3.1   Tensions Between Theoretical and Empirical Modeling 

 ABMs are valuable for both theoretical exploration and empirical investigation of 
complex systems. For theoretical inquiry, modeling serves as a means to better under-
stand how elements of interest and the relationships among them contribute to overall 
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system behavior over time. For empirical investigation, modeling is a vehicle for 
presenting all known and necessary initial conditions – defi ned in large part by system 
entities and their relationships – in order to determine how they have brought about an 
observed state and how they could bear on future possible states. ABMs also offer 
many opportunities to combine theoretical and empirical approaches, although not 
without raising issues regarding the model’s simplicity and complexity. 

 Theoretical inquiry with ABMs usually entails running “controlled experiments” 
that may spur the discovery of laws about complex processes (O’Sullivan  2004 : 
288). Purely theoretical ABMs are based on hypotheses that specify certain rules for 
the behavior of actor agents and their interaction with the environment. When using 
ABMs to model urban transportation, for example, actor behavior may be defi ned 
by utility maximization, as measured by housing quality or work proximity, and 
transportation cost minimization determined by distance to housing and work and 
modal choice. While many theoretical models are built for illustrative purposes, 
such as confi rming what their underlying theories predict, some models generate 
convincing, and sometimes surprising, theoretical implications. Work on racial seg-
regation simulation based on Schelling models, for example, continues to spur 
debate (Fossett  2006  ) . ABMs contribute to the longstanding use of computer simu-
lation to allow examination of many possible futures or pasts for a given system 
(Manson and O’Sullivan  2006  ) . 

 Empirical models focus more than theoretical ones on using actual data to sim-
ulate real-world phenomena, although the two foci can be complementary. The 
increasing number of theoretical models, the growing volume of empirical data, and 
the use of lab experiments to create rules of agent behavior have all contributed to 
recent expansion in the development of empirical models (Janssen and Ostrom 
 2006  ) . These models usually extend aspects of theoretical models using empirical 
data and have the ability to make predictions and prescriptions under different 
demographic, economic, and policy scenarios. Since one of the aims of creating 
empirical ABM is to accurately describe real-world processes, a tension exists 
between the descriptive power granted by specifi city and the desire to generalize to 
other settings. A model must therefore maintain a balance between fi tting the empir-
ical data and highlighting the processes of interest (Manson  2007  ) . 

 The relationship between theoretical and empirical foci in ABMs highlights how 
the modeling of empirically complex phenomena with relatively simple or founda-
tional rules is a diffi cult task. For example, because it is impossible to completely 
simulate all aspects of natural or human organization without reduction and simpli-
fi cation, all urban complexity models will have a theoretical component (Irwin et al .  
 2009  ) . Similarly, although complexity theory seeks to capture underlying dynamics, 
we still face a world where it is diffi cult to divine many characteristics of the eco-
nomic state of a city beyond a few years. Any model that attempts to capture the 
necessary specifi city of the myriad system entities may be regarded less for its com-
plexity than for its complication (Torrens and O’Sullivan  2001  ) . When adding a 
large number of features to a model, the modeler strays from the notion that a small 
number of rules describing the behavior of agents will lead to complex systems. 
This challenge arises when modeling urbanization and land change, for example, as 
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ABMs become more common and sophisticated. Modelers can represent many 
entities and relationships at the risk of moving away from the ethos of generating 
complex outcomes based on simple conditions and rules (Parker et al .   2003  ) .  

    7.3.2   Calibration, Verifi cation, and Validation 

 Agent-based complexity models require careful and thorough evaluation, which is 
comprised of calibration, verifi cation, and validation (Manson  2003  ) . Calibration is 
the adjustment of model parameters and specifi cations to fi t certain theories or 
actual data. Verifi cation determines whether the model runs in accordance with 
design and intention, as ABMs rely on computer code susceptible to programming 
errors. Model verifi cation is usually carried out by running the model with simu-
lated data and with sensitivity testing to determine if output data are in line with 
expectations. Validation involves comparing model outputs with real-world situa-
tions or the results of other models, often via statistical and geovisualization analy-
sis. Model evaluation has more recently included the challenge of handling enormous 
data sets, both for the incorporation of empirical data and the production of simula-
tion data. Modelers must also deal with questions concerning the relationship 
between pattern and process at all stages of calibration, verifi cation, and validation. 
Ngo and See  (  2012  )  discuss these stages in ABM development in more detail. 

 Empirical ABM modelers struggle to obtain the data necessary for proper cali-
bration. From a practical standpoint, simulating a complex system such as an urban 
housing market requires initializing a range of key components including agents, 
organizations, and the environment. Modelers rarely have the necessary individual-
level data, however, to populate agents such as households, and may similarly be 
missing information on organizational dynamics or features of the environment. 
They typically have either a limited set of random samples (e.g., household surveys, 
phone interviews) or more often, spatially aggregated data at various scales that are 
collected for other purposes by different government agencies (e.g., census data, 
regional economic information). Exogenous parameters (e.g. for urbanization, driv-
ers such as population growth rates, interest rates, and federal taxes) can often be 
derived from actual data, but sometimes are the results of educated guesses, simple 
linear interpolation, or extrapolation (Brown and Robinson  2006 ; Torrens  2007  ) . 

 Proper calibration and validation also entails the integration and reconciliation 
of data across multiple scales and formats. In ABMs involving both human and 
environmental elements, for instance, integrating vector and raster data that 
describe human and natural phenomena respectively at different scales can create 
problems like ecological fallacies (drawing incorrect inference on individuals from 
aggregated data) or inappropriate classifi cation when assigning attributes and 
aggregating features. There are also broader conceptual issues that arise when rec-
onciling data from different scales (e.g., household data vs. census information vs. 
regional socioeconomic statistics) and linking these observed data to the agents of 
interest (e.g., households versus parcels versus neighbourhoods). In response to 
these issues, modelers may need to generate individual data from random samples 
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or from aggregate data, such as census data. Promising approaches include iterative 
proportional fi tting procedures, where tabular data are modifi ed to new levels of 
aggregation, or Monte Carlo simulation, where multiple probabilistic draws are 
taken on a sample data set (Wheaton et al .   2009  ) . 

 While complexity modelers often lack suffi cient data for ABM calibration and vali-
dation, they also face challenges when generating simulation data. Understanding the 
dynamics of the attributes of different kinds of agents of even a moderately sophisti-
cated simulation demands great effort to visualize, analyze, and replicate the modeled 
phenomenon or process (Janssen  2009  ) . The nature of intermediate attribute and 
behavioral data of actor agents, for example, is rarely discussed in the literature, 
although such data are potentially useful for the validation of agent behavior and the 
social processes that produce such behavior. Here, complexity theory can allow the 
researcher to triangulate among different approaches and viewpoints, because it focuses 
on identifying generic features of complex systems without getting the inquiry mired 
in a need to address ontological or epistemological questions (O’Sullivan  2004  ) . 

 In terms of broader validation challenges, distinctions between theoretical and 
empirical approaches lead to questions concerning pattern and process. Patterns that 
are often generated in complexity models, including fractals and information-theory 
measures, may not reveal much about the processes that generate them, much less 
whether the processes are complex in the sense meant by deterministic or aggregate 
complexity. The potential disconnect between pattern and process may infl uence 
how the modeler chooses between empirically-driven explanation and description 
(which usually tilts toward pattern) versus theoretically driven discovery and hypoth-
esis generation (which is often biased towards process). A number of authors, for 
example, incorporate variables and rules into a model that bring about a community 
pattern for the Anasazi civilization in the southwest United States previously deter-
mined by archeologists and historians (Axtell et al .   2002 ; Dean et al .   2000  ) . The 
ABM identifi es how discrete entities and their relationships give rise to higher-level 
systemic processes, but this focus on scale raises the specter of equifi nality, where 
different variables and processes may lead to the same outcome, or similarly, where 
only a few key variables determine model outcomes (Janssen  2009  ) . For theoretical 
models, the modeler has more leeway to set initial conditions and formulate iterative 
rules that can illuminate a theoretical question, although validation becomes diffi cult 
in the absence of empirical data. Axelrod’s  (  1997  )  culture dissemination model, for 
example, demonstrates how regions adopt or reject the cultural practices of neighbor-
ing regions. The model results, while not refl ecting the real world in detail, elicit 
interesting questions about interactions between actors across space and over time.  

    7.3.3   Scale 

 ABM researchers pay close attention to the spatial, temporal, and organizational 
scale of the simulation process. As noted above, one of the hallmarks of scalar 
properties in ABMs is emergence, the phenomenon of processes occurring at one 
level that are not evident based on a summing up of lower-level processes. 
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Emergent properties are implicitly scalar, as seen in how humans function based 
on the workings and interactions of the component organs, the fl ight patterns of a 
fl ock of birds arising from the actions of individual birds, and the traffi c gridlock 
that occurs based on the decisions of individual drivers (Mainzer  1996  ) . Importantly, 
emergence is often unintentional. Drivers and their vehicles do not generally seek 
to create gridlock, for example, but their actions and subsequent interactions read-
ily create traffi c jams. ABM modelers can draw on several bodies of work to help 
defi ne and understand scale and emergence as well as adding context to notions of 
non-linearity and sensitivity. In addition, scale offers an entry point to the model-
ing of networks using ABM. 

 One approach to defi ning scale levels and emergence is provided by hierarchy 
theory, wherein actors and systems, through their functions and interactions, form 
larger systems. A regional housing market, for example, can have several sub-
regions as housing market areas; each housing market area also has housing sub-
markets; a housing sub-market might then include several cities or several school 
districts with similar socioeconomic characteristics; within such a sub-market exist 
smaller neighborhoods defi ned by residents’ activity and interaction patterns. Under 
this formulation, scale levels should be considered as defi ned by interactions and 
relationships among entities, but importantly, it is up to the analyst to defi ne these 
levels instead of taking them as pre-defi ned (O’Neill  1988  ) . Similar frameworks 
exist for the emergence of scale from interactions among entities, such as when 
institutions arise from the interrelationships of individuals (Ostrom  2005  )  or, more 
broadly, when human-environment systems such as agriculture or forestry exist at 
multiple scales of analysis (Easterling and Polsky  2004  ) . 

 When drawing upon hierarchy theory, the modeler can identify the system’s con-
stitutive hierarchies, wherein the components of a subsystem have emergent proper-
ties only when they are brought together to form a higher-level system (Gibson et al .  
 2000  ) . When considering emergent properties in collective behavior, an implicit 
assumption is made by the modeler that the lower-level processes are individually 
not as complex as the collective outcome, yet simultaneously each individual entity 
may be constitutive of emergent properties based on processes one level further 
down. The modeler can therefore create a series of models that nest these processes 
within one another, thereby modeling a hierarchically ordered system. 

 Notions of scale levels defi ned by constitutive hierarchies provide a useful coun-
terweight to non-linearity and sensitivity as conceived by deterministic complexity 
and aggregate complexity. When determining both the spatial and temporal scales 
of inquiry, one may discern linear associations or limits that coincide with scale 
levels. Identifying the fl apping of a butterfl y’s wings as a cause of super-regional 
weather phenomena like hurricanes is a powerful idea, but may not account for a 
large set of temporal conditions that, in concert with the wings, led to the hurricane. 
Hence, a claim that the butterfl y was necessary does not mean that it was suffi cient. 
In regard to social processes that may seem non-linear, such as the ways that a mas-
sively distributed photograph or website video of an individual event may infl uence 
national or international policy, one must still consider the communication infra-
structure and the social networks that represent a series of steps from one hierarchical 
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scale level to the next, with each step imposing fi lters and meaning. In contrast to 
the conception of emergence being merely a bottom-up process, co-evolutionary 
processes play out when entities understand they are constitutive of the system and 
can modify it. In addition to understanding how social norms emerge from personal 
interrelationships, for example, it is necessary to determine how emergent norms 
feed back onto individuals (Ostrom  2005  ) . 

 One rapidly emerging form of scale in ABM research, mirroring trends in scale 
and complexity research more broadly, is the notion of networks defi ning scales 
(Manson  2008  ) . Networks have interesting scalar properties that are increasingly 
important to ABM as researchers combine modeling with the rubrics of graphing 
and topology. The study of small world networks reveals that when just a few addi-
tional links between distant nodes are added to a network where most links are 
otherwise based on proximity, the connectedness of the entire network greatly 
increases (Watts  2003  ) . Barabasi and Albert  (  1999  )  fi nd that many real networks are 
self-organizing and scale-free, as they follow a power-law distribution due to inher-
ent processes of growth and preferential attraction of new nodes to well-connected 
ones. They cite examples of scale-free networks that include the World Wide Web, 
the electrical power grid of the western United States, and citations that link scien-
tifi c journal papers. Advances in our understanding of networks arise from a con-
fl uence of pertinent data and ABMs, as seen with the joining of a variety of social 
science databases and decision-making agents in the context of economics and 
politics (Skvoretz  2002  ) .  

    7.3.4   Equilibrium and Change 

 Researchers of all stripes have long modeled many systems under the assumption of 
equilibrium. Agent-based modeling, by focusing on complex dynamics, provides an 
opportunity to understand the degree of explanatory power that the assumption of 
equilibrium has for a given system. Deterministic complexity often does not regard 
equilibrium as a necessary feature, even if a model of system dynamics can capture 
whether equilibrium is attainable given the initial conditions and process interac-
tions. For example, ABMs are increasingly used to investigate processes such as the 
spread of smallpox or cultural memes, where the spatiotemporal dynamics rather 
than system equilibrium are the phenomenon of interest (Epstein  2006  ) . Issues of 
equilibrium and change lend further context to concepts of sensitivity and nonlin-
earity in complex systems by offering commentary on system resilience and the 
potential for dynamic movement among basins of attraction. 

 Dramatic changes wrought in a system because of its inherent sensitivity and 
nonlinearity of interactions are countered by the system’s resilience, the ability to 
adjust to disturbance and reorganize without signifi cantly changing its functions or 
structure, and its transformability, the ability to create a new system confi guration 
when adjustment is not possible (Walker et al .   2004  ) . A system can be highly resil-
ient despite a high degree of instability when it is self-organizing (Holling  1996  ) . 
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Also, resilience is a scale-dependent characteristic, both temporally and spatially. 
A system resilient in one span of time may be compromised in a longer span, while 
a resilient community may endure at great cost to its larger, encompassing region 
(Levin and Lubchenco  2008  ) . 

 Deterministic and aggregate complexity research addresses the dynamics of non-
equilibrium states found in complex systems. The lower-level, bottom-up forces 
create processes that are constantly adapting to environmental changes and under-
going organizational transformation. The interactions that give rise to these changes 
are non-linear and subject to novelty (Holland  1995  ) , resulting in a system sensitive 
to the introduction of new components and fl uctuations of component states. Despite 
the ever-changing nature of system behavior and structure, it may gravitate toward 
one of multiple basins of attraction (Holling  1973  ) . Coupled human-environment 
systems have multiple attractors, as seen when a coupled population-phosphorus 
system has one attractor situated at a high population state with a balance of eco-
nomic and ecological drivers, and a low population state representing a restored 
ecological system (Chen et al .   2009  ) . 

 Just as scale levels can attenuate non-linearity and sensitivity, complex systems 
embody a tension between sensitivity to initial conditions and a dynamic movement 
between basins of attraction. Certain states may experience positive feedback, grav-
itating to an attraction basin that will not accommodate robust sub-systems and 
diverse inputs. Decreases in biological diversity and threats to the viability of eco-
system services, for example, represent a state where resilience is low and more 
vulnerable to disturbance (Folke  2006  ) . Human institution research recognizes the 
sensitivity of changes to rules in organizational structure, wherein small changes via 
policy can bring about “a nontrivial probability of error” (Ostrom  2005 : 243). 
Complex systems are susceptible to ‘imaginable surprise’ where seemingly unex-
pected system confi gurations are in fact understandable when we allow for complex 
features such as nonlinearity and sensitivity (Schneider et al .   1998  ) . Sensitivity, as 
with resilience, is either scale-dependent, such that the system may be regarded as 
sensitive as it moves from one attraction basin to another, or independent as these 
attractors, over longer time periods, characterize the typical system states regardless 
of initial conditions. The ability of ABM to represent these complex systems offers 
great potential for exploring emergence and surprise in human systems, such as the 
recent fi nancial crisis in the global economy (Farmer and Foley  2009  ) .  

    7.3.5   Decision Making 

 Decision making is the engine of many ABMs, particularly those involving human 
actors, and in turn it has many ties to complexity. It has long been a core concern of 
many fi elds, including geography, economics, management, and psychology. ABMs 
have helped draw out the similarities and differences among different decision-making 
theories by emphasizing the importance of developing basic rules for agents to fol-
low, leading to research focused on how such rules embody their decision-making 
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strategies. Agents in an ABM usually pursue certain goals set by the modeler with 
given resources and constraints. Commuters want to minimize their commuting 
time, for example, while homebuyers want to purchase the best house within their 
budget, and parents want to move into neighborhoods with quality public schools. 
Standard decision-making theory is a logical starting point for modeling these deci-
sions, as seen in the wide use of multi-criteria evaluation and Cobb-Douglas utility 
functions to enable simulated agents to make decisions regarding parcel develop-
ment and household migration (Brown et al .   2005 ; Parker and Filatova  2008  ) . While 
recognizing the value of assumptions such as utility maximization in classical eco-
nomics, ABMs have also opened the door to other forms of decision-making theory. 
Behavioral economics, for example, emphasizes the importance of concepts like 
incomplete information, bounded rationality, reinforcement over time, expected 
utility, and market anomalies (Arthur  1991 ; Simon  1997b  ) . 

 ABMs illustrate how actor agents make decisions to achieve predefi ned goals in 
an environment shaped by all agents, and more importantly, how these individual 
decisions lead to macro patterns that are not predicted by perfect rationality. The 
concept of bounded rationality, introduced by Herbert Simon, depicts the actor 
whose decision making is bounded three ways  (  1997b  ) . The fi rst represents the 
“skill, habits, and refl exes” (Simon  1997a : 46) that exist beyond our conscious 
grasp, and presumably, beyond rational decision making. The second is the actor’s 
set of purposes and values, which may differ from those of someone else in an oth-
erwise similar decision making scenario. The third bound is limited information, 
wherein the actor lacks certain facts or skills that would contribute to a fully informed 
decision. Representing these three bounds is nascent in ABM but arguably it is this 
form of modeling that is well suited to advance our understanding of bounded ratio-
nality because agents can represent various features of boundedness such as limited 
computational capacity or rules of thumb (Chen  2005 ; Dawid  1999 ; Edmonds and 
Moss  1997 ; Manson  2006  ) . In particular, ABMs allow various decision-making 
strategies, including from rules-of-thumb or heuristics for adapting to a changing 
environment (Gigerenzer and Selton  2001  ) . Axelrod  (  1997  ) , for example, sees 
actors in his cultural dissemination model as not making rational decisions as such, 
but simply adapting to their environment. More broadly, decision-makers use heu-
ristics to make ‘non-rational’ decisions, based on the manner in which possible 
choices are framed (Tversky and Kahneman  1974  ) . 

 The distinction between an individual decision and a collective one allows for a 
more sophisticated mechanism to model the choices of actors. Simon notes that 
decisions “are not made by ‘organizations’ but by human beings behaving as mem-
bers of organizations” (Simon  1997a : 281). Social network conceptions of social 
contagion, for example, address the process of collective decision-making wherein 
actors receive ideas the way that they may be exposed to the carrier of a disease. 
Thresholds may be established in which the actor accepts the idea after being 
exposed to it a given number of times (Granovetter  1978 ; Watts  2003  ) . When people 
make migration decisions, for example, they not only want to physically move 
closer to the friends and relatives in their network, but their criteria for quality hous-
ing, their perception of specifi c neighborhoods, and their knowledge of vacancies 
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are all infl uenced by the available information in their network (Clark  2008  ) . Social 
infl uences on decision making are also evident in the role of refl exivity, such that the 
past and future are incorporated into present thinking. ABMs address a core ques-
tion: how does one account for actors that are aware of how their actions may feed 
into collective outcomes? A person may stay away from social events that are 
expected to be too crowded or too sparsely attended, for example, as a function of 
past experience (Arthur  1991  ) . In short, actors often play an expectations game 
when they act in order to avoid being part of an undesired collective outcome or in 
order to prevent that outcome from happening (Gilbert  1995  ) .   

    7.4   Conclusion: Complex Agents, Complex World 

 Complexity and ABMs offer much to each other. ABM research draws on a range of 
concepts and approaches from algorithmic, deterministic, and aggregate complexity. 
In turn, modeling brings to complexity a large number of actual complex systems 
and attendant theories to advance complexity science. ABMs offer a virtual labora-
tory that helps researchers navigate between theoretical and empirical research. And 
while ABM faces many challenges in calibration, verifi cation, and validation, it 
offers new ways to think about relationships between data and theory, pattern and 
process. Complexity and ABMs, separately and jointly, are also advancing our con-
ceptualization of scale in a range of complex systems, alongside issues of sensitivity, 
nonlinearity, resilience, equilibrium, and change. Finally, ABMs are a very promis-
ing technique, alongside other approaches, for modeling and understanding decision 
making. In sum, one may take heart from the many challenges facing researchers 
working at the intersection of agent-based modeling and complexity science because 
they arise from the vast potential and promise of these two worlds meeting.      
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